

CELANEX® PBT

Celanex 4300 is a toughened, 30% glass reinforced PBT.

	_								-						
ı	ار	r	\cap	М	ш	C	tι	ır	١t		r	\mathbf{r}	2	ŤΙ	n
		ш		u	w	н.				u			П		

Resin Identification	PBT-GF30	ISO 1043
Part Marking Code	>PBT-GF30<	ISO 11469

Rheological properties

Melt mass-flow rate	8 g/10min	ISO 1133
Melt mass-flow rate, Temperature	250 °C	
Melt mass-flow rate, Load	2.16 kg	
Moulding shrinkage range, parallel	0.3 - 0.5 %	ISO 294-4, 2577
Moulding shrinkage range, normal	0.8 %	ISO 294-4, 2577

Typical mechanical properties

Tensile modulus	9300	MPa	ISO 527-1/-2
Tensile stress at break, 5mm/min	130	MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	3	%	ISO 527-1/-2
Flexural modulus	9000	MPa	ISO 178
Flexural strength	200	MPa	ISO 178
Charpy impact strength, 23°C	40	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	51	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	10	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C	8.5	kJ/m²	ISO 179/1eA
Izod notched impact strength, 23°C	12	kJ/m²	ISO 180/1A
Hardness, Rockwell, M-scale	91		ISO 2039-2
Poisson's ratio	0.34 ^[C]		
Shore D hardness, 15s	83		ISO 48-4 / ISO 868
[C]: Calculated			

Thermal properties

Melting temperature, 10°C/min	225	°C	ISO 11357-1/-3
Glass transition temperature, 10°C/min	41	°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	200	°C	ISO 75-1/-2
Temperature of deflection under load, 0.45 MPa	220	°C	ISO 75-1/-2
Coefficient of linear thermal expansion	24	E-6/K	ISO 11359-1/-2
(CLTE), parallel			
Coefficient of linear thermal expansion (CLTE),	80	E-6/K	ISO 11359-1/-2
normal			

Flammability

Burning Behav. at thickness h	HB class	IEC 60695-11-10
Thickness tested	0.71 mm	IEC 60695-11-10
FMVSS Class	В	ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm	58.6 mm/min	ISO 3795 (FMVSS 302)

Printed: 2025-05-30 Page: 1 of 5

Revised: 2025-05-16 Source: Celanese Materials Database

CELANEX® PBT

Electrical properties

Relative permittivity, 100Hz	2.8		IEC 62631-2-1
Relative permittivity, 1MHz	3.9		IEC 62631-2-1
Dissipation factor, 1MHz	220	F-4	IEC 62631-2-1
Volume resistivity		Ohm.m	IEC 62631-3-1
Surface resistivity	1E15	=	IEC 62631-3-1
•	·-·-	kV/mm	IEC 02031-3-2
Electric strength	-	KV/IIIIII	
Comparative tracking index	400		IEC 60112

Physical/Other properties

Humidity absorption, 2mm	0.14 %	Sim. to ISO 62
Density	1530 kg/m³	ISO 1183

Injection

Drying Recommended	yes	
Drying Temperature	120	°C
Drying Time, Dehumidified Dryer	4	h
Processing Moisture Content	≤0.02	%
Melt Temperature Optimum	250	°C
Min. melt temperature	240	°C
Max. melt temperature	260	°C
Screw tangential speed	0.1 - 0.3	m/s
Mold Temperature Optimum	80	°C
Min. mould temperature	60	°C
Max. mould temperature	130	°C

Characteristics

Processing Injection Moulding

Delivery form Pellets

Additional information

Injection molding

Preprocessing

To avoid hydrolytic degradation during processing, CELANEX resins have to be dried to a moisture level equal to or less than 0.02%. Drying should be done in a dehumidifying hopper dryer capable of dewpoints <-30 $^{\circ}$ F (-34 $^{\circ}$ C) at 250 $^{\circ}$ F (121 $^{\circ}$ C) for 4 hours.

Processing

Rear Temperature 450-470(230-240) deg F (deg C) Center Temperature 460-480(235-250) deg F (deg C) Front Temperature 470-500(240-260) deg F (deg C) Nozzle Temperature 480-500(250-260) deg F (deg C) Melt Temperature 460-500(235-260) deg F (deg C) Mold Temperature 150-200(65-93) deg F (deg C) Back Pressure 0-50 psi

Printed: 2025-05-30 Page: 2 of 5

Revised: 2025-05-16 Source: Celanese Materials Database

CELANEX® PBT

Screw Speed Medium Injection Speed Fast

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided, in particular for flame retardant grades. Up to 25% clean and dry regrind may be used.

Processing Notes

Pre-Drying

To avoid hydrolytic degradation during processing, CELANEX resins have to be dried to a moisture level equal to or less than 0.02%. Drying should be done in a dehumidifying hopper dryer capable of dewpoints <-40°F (-40°C) at 250°F (121°C) for 4 hours.

Storage

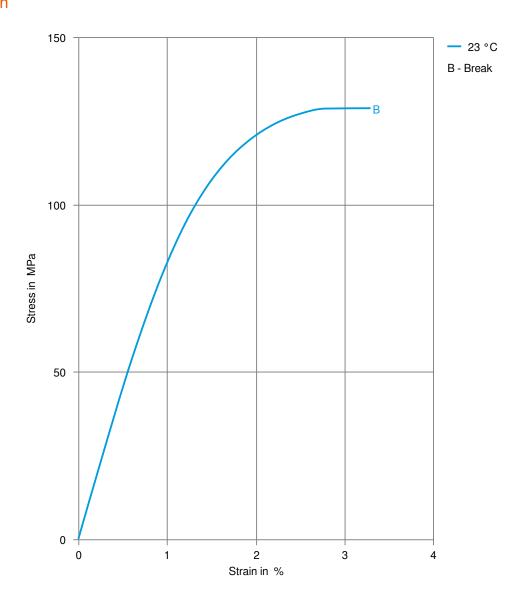
For subsequent storage of the material in the dryer until processed (\leq 60 h) it is necessary to lower the temperature to 100 ° C.

Automotive

OEM STANDARD ADDITIONAL INFORMATION

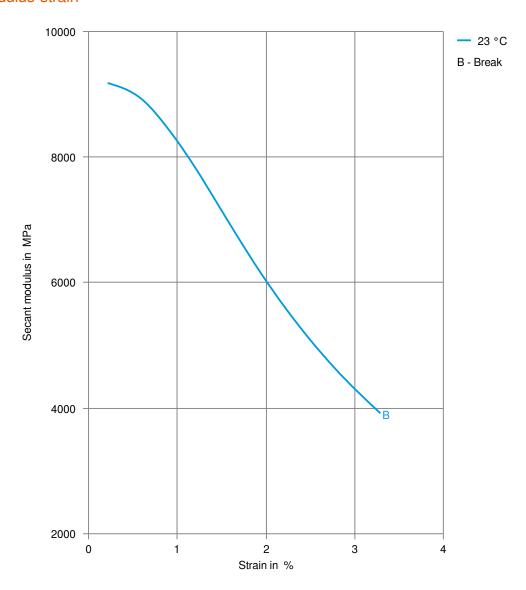
Stellantis - Chrysler MS.50103 / CPN-3199 Canod

Printed: 2025-05-30 Page: 3 of 5


Revised: 2025-05-16 Source: Celanese Materials Database

CELANEX® PBT

Stress-strain


Printed: 2025-05-30 Page: 4 of 5

CELANEX® PBT

Secant modulus-strain

Printed: 2025-05-30 Page: 5 of 5

Revised: 2025-05-16 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.